Topology optimization can streamline the design optimization and testing process, bringing it from the physical into the digital era. The result is a better-performing, more optimized design at lower cost.
Our bell crank has made it into the digital thread, but before we go any further, we want to see if we can make it even better, and lighter. For that, we will need to use technology called “topology optimization.”
In this episode, we will explore the concept of topology optimization and the role it can play in improving performance. We will examine how, through topology optimization, parts can be created “like they have never been created in the past,” as noted in the video, and consider the consequences of such creation on industry.
The team will investigate how topology optimization works — considering the materials needed, weight targets, and expected stress loads — to locate material only where required in order to achieve the end performance goals for the part. Mark and Jay Clark walk through the optimization process, step by step, to create a new version of the bell crank that is simultaneously lighter and more capable of handling the stresses it will encounter when it makes its way onto an actual aircraft. (It also looks a lot cooler.) We’ll finish by understanding how integration with the digital thread makes topology optimization easier and faster.
But can we expect this new part to function as expected? To answer that question, we will have to move to the next stop along the digital thread.
W. Zhang, J. Zhu, and T. Gao, “Topology Optimization in Engineering Structure Design,” (London/Oxford U.K.: ISTE Press/Elsevier, 2016).
About the Authors
Mark Cotteleer, PhD, is the research director of Deloitte Services LP’s Center for Integrated Research. His research focuses on the application of advanced technology in pursuit of operational and supply chain improvement. He has led teams in technology-enabled reengineering, supply chain strategy, business analytics, and process design; his experience with clients includes manufacturing, supply chain, business analytics, health care, and service industries. He can be reached at mcotteleer@deloitte.com, and he tweets @MJCotteleer.
Brenna Sniderman is a senior manager and subject matter specialist at Deloitte Services LP’s Center for Integrated Research. She focuses on cross-industry themes and trends, specifically as they relate to additive and advanced manufacturing, Industry 4.0, the internet of things, and advanced technologies. She works with other thought leaders to deliver insights into the strategic and organizational implications of these technologies. She can be reached at bsinderman@deloitte.com.
Hemnabh Varia is an analyst with Deloitte Services India Pvt. Ltd., affiliated with Deloitte Services LP’s Center for Integrated Research. Over the past four years, he has managed several dedicated and ad-hoc research assignments for the technology, chemical, and manufacturing industries. He can be reached via LinkedIn.